(0) Obligation:

Runtime Complexity TRS:
The TRS R consists of the following rules:

top(sent(x)) → top(check(rest(x)))
rest(nil) → sent(nil)
rest(cons(x, y)) → sent(y)
check(sent(x)) → sent(check(x))
check(rest(x)) → rest(check(x))
check(cons(x, y)) → cons(check(x), y)
check(cons(x, y)) → cons(x, check(y))
check(cons(x, y)) → cons(x, y)

Rewrite Strategy: FULL

(1) DecreasingLoopProof (EQUIVALENT transformation)

The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
top(sent(cons(x2_0, cons(x193_0, y194_0)))) →+ top(sent(cons(check(x193_0), y194_0)))
gives rise to a decreasing loop by considering the right hand sides subterm at position [].
The pumping substitution is [y194_0 / cons(x193_0, y194_0)].
The result substitution is [x2_0 / check(x193_0)].

(2) BOUNDS(n^1, INF)

(3) RenamingProof (EQUIVALENT transformation)

Renamed function symbols to avoid clashes with predefined symbol.

(4) Obligation:

Runtime Complexity Relative TRS:
The TRS R consists of the following rules:

top(sent(x)) → top(check(rest(x)))
rest(nil) → sent(nil)
rest(cons(x, y)) → sent(y)
check(sent(x)) → sent(check(x))
check(rest(x)) → rest(check(x))
check(cons(x, y)) → cons(check(x), y)
check(cons(x, y)) → cons(x, check(y))
check(cons(x, y)) → cons(x, y)

S is empty.
Rewrite Strategy: FULL

(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)

Infered types.

(6) Obligation:

TRS:
Rules:
top(sent(x)) → top(check(rest(x)))
rest(nil) → sent(nil)
rest(cons(x, y)) → sent(y)
check(sent(x)) → sent(check(x))
check(rest(x)) → rest(check(x))
check(cons(x, y)) → cons(check(x), y)
check(cons(x, y)) → cons(x, check(y))
check(cons(x, y)) → cons(x, y)

Types:
top :: sent:nil:cons → top
sent :: sent:nil:cons → sent:nil:cons
check :: sent:nil:cons → sent:nil:cons
rest :: sent:nil:cons → sent:nil:cons
nil :: sent:nil:cons
cons :: sent:nil:cons → sent:nil:cons → sent:nil:cons
hole_top1_0 :: top
hole_sent:nil:cons2_0 :: sent:nil:cons
gen_sent:nil:cons3_0 :: Nat → sent:nil:cons

(7) OrderProof (LOWER BOUND(ID) transformation)

Heuristically decided to analyse the following defined symbols:
top, check

They will be analysed ascendingly in the following order:
check < top

(8) Obligation:

TRS:
Rules:
top(sent(x)) → top(check(rest(x)))
rest(nil) → sent(nil)
rest(cons(x, y)) → sent(y)
check(sent(x)) → sent(check(x))
check(rest(x)) → rest(check(x))
check(cons(x, y)) → cons(check(x), y)
check(cons(x, y)) → cons(x, check(y))
check(cons(x, y)) → cons(x, y)

Types:
top :: sent:nil:cons → top
sent :: sent:nil:cons → sent:nil:cons
check :: sent:nil:cons → sent:nil:cons
rest :: sent:nil:cons → sent:nil:cons
nil :: sent:nil:cons
cons :: sent:nil:cons → sent:nil:cons → sent:nil:cons
hole_top1_0 :: top
hole_sent:nil:cons2_0 :: sent:nil:cons
gen_sent:nil:cons3_0 :: Nat → sent:nil:cons

Generator Equations:
gen_sent:nil:cons3_0(0) ⇔ nil
gen_sent:nil:cons3_0(+(x, 1)) ⇔ sent(gen_sent:nil:cons3_0(x))

The following defined symbols remain to be analysed:
check, top

They will be analysed ascendingly in the following order:
check < top

(9) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)

Could not prove a rewrite lemma for the defined symbol check.

(10) Obligation:

TRS:
Rules:
top(sent(x)) → top(check(rest(x)))
rest(nil) → sent(nil)
rest(cons(x, y)) → sent(y)
check(sent(x)) → sent(check(x))
check(rest(x)) → rest(check(x))
check(cons(x, y)) → cons(check(x), y)
check(cons(x, y)) → cons(x, check(y))
check(cons(x, y)) → cons(x, y)

Types:
top :: sent:nil:cons → top
sent :: sent:nil:cons → sent:nil:cons
check :: sent:nil:cons → sent:nil:cons
rest :: sent:nil:cons → sent:nil:cons
nil :: sent:nil:cons
cons :: sent:nil:cons → sent:nil:cons → sent:nil:cons
hole_top1_0 :: top
hole_sent:nil:cons2_0 :: sent:nil:cons
gen_sent:nil:cons3_0 :: Nat → sent:nil:cons

Generator Equations:
gen_sent:nil:cons3_0(0) ⇔ nil
gen_sent:nil:cons3_0(+(x, 1)) ⇔ sent(gen_sent:nil:cons3_0(x))

The following defined symbols remain to be analysed:
top

(11) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)

Could not prove a rewrite lemma for the defined symbol top.

(12) Obligation:

TRS:
Rules:
top(sent(x)) → top(check(rest(x)))
rest(nil) → sent(nil)
rest(cons(x, y)) → sent(y)
check(sent(x)) → sent(check(x))
check(rest(x)) → rest(check(x))
check(cons(x, y)) → cons(check(x), y)
check(cons(x, y)) → cons(x, check(y))
check(cons(x, y)) → cons(x, y)

Types:
top :: sent:nil:cons → top
sent :: sent:nil:cons → sent:nil:cons
check :: sent:nil:cons → sent:nil:cons
rest :: sent:nil:cons → sent:nil:cons
nil :: sent:nil:cons
cons :: sent:nil:cons → sent:nil:cons → sent:nil:cons
hole_top1_0 :: top
hole_sent:nil:cons2_0 :: sent:nil:cons
gen_sent:nil:cons3_0 :: Nat → sent:nil:cons

Generator Equations:
gen_sent:nil:cons3_0(0) ⇔ nil
gen_sent:nil:cons3_0(+(x, 1)) ⇔ sent(gen_sent:nil:cons3_0(x))

No more defined symbols left to analyse.